Guanylyl cyclase/natriuretic peptide receptor-A signaling antagonizes phosphoinositide hydrolysis, Ca2+ release, and activation of protein kinase C
نویسنده
چکیده
Thus far, three related natriuretic peptides (NPs) and three distinct sub-types of cognate NP receptors have been identified and characterized based on the specific ligand binding affinities, guanylyl cyclase activity, and generation of intracellular cGMP. Atrial and brain natriuretic peptides (ANP and BNP) specifically bind and activate guanylyl cyclase/natriuretic peptide receptor-A (GC-A/NPRA), and C-type natriuretic peptide (CNP) shows specificity to activate guanylyl cyclase/natriuretic peptide receptor-B (GC-B/NPRB). All three NPs bind to natriuretic peptide receptor-C (NPRC), which is also known as clearance or silent receptor. The NPRA is considered the principal biologically active receptor of NP family; however, the molecular signaling mechanisms of NP receptors are not well understood. The activation of NPRA and NPRB produces the intracellular second messenger cGMP, which serves as the major signaling molecule of all three NPs. The activation of NPRB in response to CNP also produces the intracellular cGMP; however, at lower magnitude than that of NPRA, which is activated by ANP and BNP. In addition to enhanced accumulation of intracellular cGMP in response to all three NPs, the levels of cAMP, Ca(2+) and inositol triphosphate (IP3) have also been reported to be altered in different cells and tissue types. Interestingly, ANP has been found to lower the concentrations of cAMP, Ca(2+), and IP3; however, NPRC has been proposed to increase the levels of these metabolic signaling molecules. The mechanistic studies of decreased and/or increased levels of cAMP, Ca(2+), and IP3 in response to NPs and their receptors have not yet been clearly established. This review focuses on the signaling mechanisms of ANP/NPRA and their biological effects involving an increased level of intracellular accumulation of cGMP and a decreased level of cAMP, Ca(2+), and IP3 in different cells and tissue systems.
منابع مشابه
Expression of guanylyl cyclase-A/atrial natriuretic peptide receptor blocks the activation of protein kinase C in vascular smooth muscle cells. Role of cGMP and cGMP-dependent protein kinase.
To understand the molecular mechanisms of cellular signaling of atrial natriuretic peptide (ANP), we have studied its effect on the enzymatic activity of endogenous and overexpressed protein kinase C (PKC) in rat thoracic aortic vascular smooth muscle (RTASM) cells. Angiotensin II (ANG II), endothelin-1 (ET-1), and 12-O-tetradecanoylphorbol 13-acetate (TPA) stimulated fourfold to fivefold PKC a...
متن کاملIntracellular signaling mechanisms mediating catecholamine release upon activation of NPY Y1 receptors in mouse chromaffin cells.
The adrenal chromaffin cells synthesize and release catecholamine (mostly epinephrine and norepinephrine) and different peptides, such as the neuropeptide Y (NPY). NPY stimulates catecholamine release through NPY Y1 receptor in mouse chromaffin cells. The aim of our study was to determine the intracellular signaling events coupled to NPY Y1 receptor activation that lead to stimulation of catech...
متن کاملAtrial natriuretic peptide induces acrosomal exocytosis of human spermatozoa.
Acrosomal exocytosis in mammalian spermatozoa is a process essential for fertilization. We report here that atrial natriuretic peptide (ANP) markedly stimulates acrosomal exocytosis of capacitated human spermatozoa. Typically, ANP exerts some of its actions via activation of the ANP receptor (ANPR-A), a particulate guanylyl cyclase-linked receptor, and subsequent formation of guanosine 3',5'-cy...
متن کاملC-type natriuretic peptide neuromodulates independently of guanylyl cyclase activation.
Of the four endogenous members of the natriuretic peptide family, only atrial natriuretic peptide has been demonstrated to have neuromodulatory effects. This study compares the neuromodulatory effects of atrial natriuretic peptide and a recently identified natriuretic peptide, C-type natriuretic peptide, in the rabbit isolated vas deferens. The ability of these peptides to alter cyclic nucleoti...
متن کاملNatriuretic peptide receptor guanylyl cyclase-A pathway counteracts glomerular injury evoked by aldosterone through p38 mitogen-activated protein kinase inhibition
Guanylyl cyclase-A (GC-A) signaling, a natriuretic peptide receptor, exerts renoprotective effects by stimulating natriuresis and reducing blood pressure. Previously we demonstrated massive albuminuria with hypertension in uninephrectomized, aldosterone-infused, and high salt-fed (ALDO) systemic GC-A KO mice with enhanced phosphorylation of p38 mitogen-activated protein kinase (MAPK) in podocyt...
متن کامل